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Stability and vibrations of catenoid-shaped smectic films

M. Ben Amar?, P.P. da Silva', N. Limodin?, A. Langlois?, M. Brazovskaia?,

C. Even?, 1.V. Chikina®?, and P. Pieranski®"

1 ONRS-Laboratoire de Physique Statistique de 'ENS, 24 rue Lhomond, 75231 Paris Cedex 05, France
2 Laboratoire de Physique des Solides, Université Paris-Sud, Batiment 510, 91405 Orsay Cedex, France
3 Laboratoire Léon Brillouin, CEA Saclay-CNRS, 91191 Gif-sur-Yvette Cedex, France

Received: 25 November 1997 / Received in final form: 30 January 1998 / Accepted: 9 March 1998

Abstract. Catenoid-shaped smectic films are spanned between two coaxial circular frames separated by a
distance H. It is shown that there exists a critical height H* such that below it two shapes of the catenoid
are possible. The stability of these two shapes is analysed in terms of their vibrations. The spectrum of
eigenfrequencies is calculated as a function of the catenoid height. It is shown that the frequency of the
fundamental mode is real for the stable shape and imaginary for the other shape. Experimental study of
vibrational eigenmodes performed on stable SCE4 films confirms this theoretical prediction.

PACS. 61.30.-v Liquid crystals — 62.30.4+d Mechanical and elastic waves; vibrations — 03.40.-t Classical
mechanics of continuous media: general mathematical aspects

1 Introduction

When molecular layers forming a free-standing smectic
film are liquid (in two dimensions), the tension 7 of the
film is uniform and isotropic. The thickness of the film
can be made uniform too and set in a wide range by an
appropriate manipulation during its drawing. Such films,
of uniform tension and thickness, behave as perfect mem-
branes [1].

When smectic films are flat, their vibrations in vac-
uum obey the Helmholtz wave equation [2]. For this rea-
son, smectic films have been used recently as a model sys-
tem for an experimental verification of the theoretical pre-
dictions concerning the relationship between the shapes
of flat drums and the spectra of their eigenfrequencies.
In particular, it has been shown experimentally that two
drums of different shapes invented by Gordon, Webb and
Wolpert are isospectral [3].

The case of curved smectic films is much more com-
plex for several reasons. First of all, for a given geometry
of the frame, the equilibrium shapes of the film depend on
the pressure difference Ap between its two sides. In the
simplest case, when Ap = 0, the film must take the shape
of a surface having everywhere zero mean curvature. This
leads to the second difficulty because on a given frame
more than one of such surfaces can be spanned so that
one has to deal with the problem of the stability of possi-
ble shapes. The example of films spanned on two identical
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Fig. 1. Parameters of a surface of revolution.

circular coaxial frames of radius R separated by a distance
H (Fig. 1) is generic. On such a frame, smectic films can
either take the shape of two flat discs spanned separately
on the circular frames or the shape of a catenoid [4] — the
unique minimal surface of revolution — spanned between
the two frames. It has been shown in past [5] and in the
accompanying paper [6] that for certain distances H, two
different catenoids can be spanned between the frames.
This is shortly reminded in Section 2.1 where we calcu-
late possible shapes of the catenoid as a function of the
distance H.

The principal aim of the present paper is to consider
the problem of stability of these shapes with respect to
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Fig. 2. Height of the catenoid versus its minimal radius. The
radius R of the frame is used as the unit of length.

infinitesimal transverse deformations. This is done in Sec-
tion 2.2 where, using the equation of motion proposed by
Ben Amar and Patricio da Silva [7], we calculate the spec-
trum of vibrational eigenmodes. These calculations are
made under assumption that smectic films are liquid in
two dimensions so that only the capillary restoring force
is taken into account. Nevertheless, it is important to note
that smectic films can have an in-plane elasticity (SmB-
like films) that can also contribute to the restoring force
[8]. The theoretical analysis of Section 2 is completed in
Section 3 by presentation of measurements of eigenfre-
quencies on SmC*-like films.

2 Theory of stability and vibrations
of the catenoid

2.1 Possible shapes of the catenoid

Let 7 = r(z) be the radius of the surface of revolution
given as a function of the height z (Fig. 1). For the
catenoid one has [4]:

r(z) = rocosh (%)

where 7y corresponds to the minimal radius at z = 0. For a
given radius R of the frames, this minimal radius depends
on the distance H through the boundary condition:

— =rgarcch [ — | -
2 To

Using the radius R as the unit of length and reduced vari-
ables 7o = ro/R and H = H/R, one gets

1)

(2)

H = 2fparcch (i) : (3)

To
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The plot H(7) is shown in Figure 2. It has a maxi-
mum H* = 1.3254 for 75 = 0.5524. It means that for
the distance H larger then 1.3254R no catenoid can be
spanned between the two circular frames. For H < H*,
two catenoids of different radii can satisfy the boundary
condition (3). Of course, at fixed H and R values, the
catenoid with the larger 7y value has smaller area, so it is
energetically favoured.

It has been shown experimentally (see the previous
paper [6]) that the right branch (7§ < 7o < 1) of the
plot H (7o) corresponds to stable shapes of the catenoid
while the left branch (0 < 7y < 7§) corresponds to un-
stable shapes. In experiments in which the smectic film
is spanned between two circular frames, only the right
branch of the plot H(7) can be realised. When the dis-
tance H is increased above the critical value H™*, the
catenoid collapses. As a result, one gets two flat films
spanned separately on the two frames and a small smectic
bubble is created in the middle of the gap between the
frames.

It has been shown in reference [6] that in spite of its
instability the left branch of the plot in Figure 2 can also
be realised experimentally. For this purpose, one of the
circular frames has to be replaced by a flat plate and the
distance H/2 between the frame and the plate must be
regulated in an appropriate way preventing the instability.

The analysis of vibrations presented in the next section
will confirm the stable and unstable characters of the two
possible shapes of the catenoid.

2.2 Vibrations of the catenoid

Let us consider a catenoid given by equation (1). Its vi-
brations involve a displacement

’U)(Z, b, t) = ei“’tw(z, (b) (4)

in the direction normal to the surface. Due to this dis-
placement, a surface element of the catenoid is submitted
to two forces: the force due to the tension 7 of the sur-
face and the force of inertia due to its mass p per unit
area. The equation of motion resulting from the balance
of these forces has been written in [7] as:

1 *w(0,6)  0*w(0, )
Tr%ch%v( o o )
2w(0, ¢)

+7—;§Cﬁ + pw?w(0,¢) =0 (5)

where 6 = z/rg. The first term in this equation represents
the Laplace force due to the mean curvature created by a
non uniform displacement field w(f, ¢). The second term
represents the Laplace force due to the mean curvature
created by an uniform displacement of the surface. The
third term represents obviously the inertial force. Using

wy = %\/% (6)
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Fig. 3. Modes of vibrations of the catenoid.

as a unit of frequency, the equation (5) can be written as
2w(6, ¢)

ch?6

+ ch?05%w(0,4) =0 (7)

(3210(9, 9)

0¢?

where

o== (8)

Wy

is a dimensionless frequency.
Due to the symmetry of revolution of the catenoid, the
eigenmodes of the catenoid must be periodic with respect
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to ¢ and can be represented as:
w(f, ) = w(h)cos(ng) (n=0,1,2,...),
w(f, ¢) = w(f)sin(ng) (n=1,2,3,...), (9)
so that the equation (7) reduces to
0%w(0) 2 2, ~2 12
902 + (@ —n” 4+ wch 9) w(&) =0. (10)

The eigenvalues @ have been found by a numerical in-
tegration of this equation in intervals (—©/2,©/2) with
© varying from 0 to co. For a given ©, the integration
starts from the lower limit of the interval corresponding
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Fig. 4. Calculated frequency of eigenmodes.

to the lower frame of the catenoid where obviously one has
w(—6/2) = 0. The choice of the first derivative w'(—©/2)
is arbitrary because only the amplitude of the eigenfunc-
tion is affected by it. The parameter & is then adjusted
in a way that on the upper frame one has w(©/2) = 0.
By this means, for a given n, one finds a set of eigenval-
ues Wy, corresponding to eigenfunctions wy, (0, ¢) with
m nodes in the interval (—©/2,60/2).

In Figure 3 we show a few eigenfunctions wym, (6) cal-
culated by this procedure. The plot of eigenvalues @y,
versus @ is shown in Figure 4. Its most striking feature is
the change of the sign of the eigenvalue &3, at ©* ~ 2.4.
This means that for ©® < @*, the frequency &g of the
fundamental mode is real so that it has an oscillatory be-
haviour. For ©® > ©* the frequency &gg is imaginary what
corresponds to an exponential divergence of the mode —
the catenoid becomes unstable. All other modes have no
singularity at ©*. This instability can be shown by an ex-
plicit resolution of equation (10) at zero @ and for n = 0:

(11)

The boundary conditions: w(+ ©/2) = 0 gives O*thO* =
1, which is exactly the condition for a double root of
equation (3): both ro values coincide. This gives precisely
O* =2.398.

In order to understand this plot in terms of experi-
mental parameters let us remind that § = z/rg so that
© = H/ry. On the other hand, H depends on r¢ (Eq. (2)
and Fig. 2). When ry varies between R and r§ = 7¢R, H

Woo = A(@th 0 — 1)
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Fig. 5. Experimental set-up.

varies from 0 to H = H*R (the right branch of the plot
corresponding to the stable form of the catenoid). In these
conditions, the parameter © varies from 0 to ﬁ*/FS =24.
This ratio corresponds exactly to the value ©* defining
the interval (0, ©*) in which the frequency @go of the fun-
damental mode is real (Fig. 4). Now, when the minimal
radius of the catenoid rg varies between r§ = 7§ R and 0,
H varies from H* = H*R to 0 on the unstable branch of
the plot in Figure 2. The resulting variation of the param-
eter @ in Figure 4 is between ©* and oco. The frequency
oo is now imaginary as expected.

Let us note at the end of this section that plots of
higher modes with n or/and m different from zero have
no singularity whatever value of @. This means that the
catenoid is only unstable with respect to the fundamen-
tal mode. This analysis proves that the stability of the
catenoid derived from a variational argument of minimi-
sation of energy is consistent with a dynamical approach
of the vibration spectrum.

3 Experiments on vibrations of the catenoid

The set-up used for the production of catenoid-shaped
smectic films, excitation and detection of vibrations is de-
picted in Figure 5. Two cylindrical parts with sharp rims
of radius R = 5 mm form circular frames of the catenoid.
The distance H between them is controlled with the accu-
racy of 0.02 mm by means of a translation stage. In order
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Fig. 6. Typical frequency scan.

Fig. 7. Stroboscopic picture of the fundamental mode.

to draw a film, the frames are wet with a small amount
of liquid crystal (SCE4 from BDH) [9] and brought into
contact. Then, they are slowly pulled apart; the catenoid-
shaped film forms between them. The typical thickness
of films estimated from its optical aspect was between 10
and 30 layers. The knowledge of exact thickness is not
necessary because experiments are performed at ambient
pressure so that the inertia of the air put into motion is
much larger than the inertia of the film itself. Vibrations of
the film are excited acoustically by a loud-speaker situated
below frames. The detection is optical. A laser beam re-
flected obliquely by the film is sent on a position-sensitive
photo-diode. The amplitude and the phase of the signal
from the photodiode are detected by a lock-in amplifier
which also produces the ac voltage used for the excita-
tion.

The typical frequency scan is represented in
Figure 6. It shows the presence of a well de-
fined peak centred at 183 Hz. Stroboscopic movie-
pictures taken with a TV hand-camera allow to de-
termine the shape of this mode and its indices
(n,m). The mode shown on the photograph in
Figure 7 has no nodes in z-direction and can be identi-
fied as the fundamental mode (0, 0). The frequency of
this mode was measured as a function of the height H.
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Fig. 8. Frequency of the fundamental mode versus the reduced
height of the catenoide.

Results are plotted in Figure 8 (using the left axis for
the frequency) versus the reduced height H=H /R. This
experimental plot has to be compared with calculations
from the previous section. For this purpose, the plot from
Figure 4. can not be used such as it is because the ©
axis does not correspond directly to the reduced height
H. Therefore, the eigenvalues @oo have been recalculated
as a function of H. In practice, one sets the value of rg
between 7§ R and R and calculates H using equation (2).
Knowing H, R and rg, one gets values © and H. The inte-
gration procedure gives now the dimensionless eigenvalues
oo as a function of the reduced height H. They are plot-
ted in Figure 8 using the right axis for which the range of
reduced frequencies was adjusted in a way to obtain the
best agreement with experimental points.

4 Discussion and conclusions

It is important to note that this adjustment was made in
a way to get the best agreement in the vicinity of the crit-
ical height H*. One can say that the value of the critical
height found experimentally is in good agreement with the
one found by calculations of the eigenfrequencies. How-
ever, for H < 0.8, the difference between the experimen-
tal and theoretical frequencies seems to be growing. The
most plausible explanation of this discrepancy is based on
the fact that experiments have been performed at ambi-
ent pressure so that the inertia of air is much larger than
the one of the film itself. In these conditions, the equation
of motion (5) can only be considered as an approxima-
tion in which the parameter p has to be considered as
an effective density taking into account the mass of the
air accompanying the film in its motion. When the height
H of the catenoid decreases, this effective mass decreases
too so that the frequency of eigenmodes increases. In or-
der to avoid this difficulty, experiments could be made in
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vacuum. In such a case, instead of the acoustical excita-
tion, electrostatic forces produced by a pin-point electrode
could be used. The advantage of this type of excitation is
that by choosing an appropriate position of the electrode
all kinds of modes (m, n) could be excited.

Measurements of eigenmodes presented here were
made using the stable shape of the catenoid. However,
as pointed out in the previous paper, the unstable shape
can be realised too when one of the circular frames is re-
placed by a flat plate. Even if in these “half-catenoid”
geometry only the modes (n,m) with n odd can be ex-
cited, it could be interesting to extend the measurements
of eigenfrequencies beyond the stability limit ©*.

We hope that this work opens the way to the verifi-
cation of the isospectrality of minimal surfaces proposed
in [7].

We are grateful to H. Kirchner and B. Pansu for illuminating
discussions.
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For the purpose of the present experiments the SCE4 liquid
crystal showed experimentally better features than 8CB
in terms of the facility in drawings films between the two
circular frames. This choice of the liquid crystal having
the SmC* phase at room temperature opens the question
about the possible coupling between the vibrations of the
film and the vector field c of the molecular tilt. The surface
energy density of the distorsion of the field ¢ can be esti-
mated as Kdg? where K is the elastic constant of the order
of 1077 dyn and d is about 10™° cm. It has to be compared
with the film tension of the order of 50 dyn/cm. As con-
clusion, these energies are of the same order of magnitude
when ¢* = 50 x 10" cm™2. It means that the wavelength
of the ¢ field winding should be 107® cm. Such a distor-
sion never occurs in practice so that this coupling can be
neglected.



